APPLICATION OF CONSERVATION LAWS TO DERIVATION
OF CONDITIONS OF STABILITY FOR STATIONARY FLOWS
OF AN IDEAL FLUID

V. A. Viadimirov UDC 532.51

In this article we study the properties of the integrals of motion of an ideal incompressible fluid useful
from the point of view of stability problems. From the integrals of motion we construct a functional whose
stationary point is the given steady-state flow of the fluid. In cases where the signature of the second varia-
tion is defined this functional can take the role of the Lyapunov function {1, 2] in the probiem of determining the
classes of stable flows. The analysis of the second variation leads to the conclusion that in general its signature
is undefined. It is however defined for special classes of motion characterized by the presence of one of the
symmetry types. The general expressions for the second variation are integrals of the equations of motion
linearized for the given stationary flow. Various forms of these integrals are analyzed and corresponding in-
tegrals are given for the flow of a fluid continuously stratified in density in the gravitational field. We discuss
the hydrodynamical meaning of the results and their connection with the variational principle [3, 4]. The work
has a methodological character.

1. Fundamental Equations. Let us consider the three-dimensional motion of a homogeneous in density,
ideal and incompressible fluid in region 7 with a fixed rigid boundary 87. The following symbols are used:
Xy, Xq, X4 and t are the Cartesian coordinates and time; n = (ny, ny, ny) is the normal to 875 p and u = (uy, uy, uy
is the pressure and velocity field. The equations of motion are of the form

Du=—Vp, divu=09, D_=_36t—+u-V. (1.1)

On the boundary 87 the following condition assures no leaking:
u-n=1,;n; = 0. (1.2)
Repeated indices of vectors and tensors are everywhere understood as summation indices.
Let a{x, t) be a scalar function whose values are conserved in each fluid particle:
Da = 0. (1.3)
By means of the vorticity field w one more function is introduced
Mx, §) = (©-V)a; (1.4)
which also conserves its values in each fluid particle
D = 0. {1.5)

In particular, the field a can be considered as one of the Lagrangian coordinates of fluid particles. The rela-
tions (1.4), (1.5) then assume the sense of one of the components of the Cauchy integral of the Euler equations {5].

The stationary sclutions of the equations (1.1)-(1.5) we denote in the following manner

u=Ux), o = &x), p = P(x), a = A(x),

1.6
A=Ax), U= (Uy, Uy, Uy), @ = (1, 2, Q). 1.6)

The functions in (1.6) satisfy, as follows from (1.1)-(1.5), the following equations and boundary conditions:
(U-VWU = —VP, divU = 0 (x.7)

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 36-45,
May-June, 1987. Original article submitted February 27, 1986.

0021-8944/87/2803-0351 $12.50 ® 1987 Plenum Publishing Corporation 351



(U-V)4 =0, (U-V)A = 0; (1.8)
U:n =0 on dr. 1.9

In the general case the initial- and boundary-value problem for (1.1)-(1.5) has two integrals: the first one
is energy

2E ..=_5‘ uudv = consi,

T
and the second is defined using an arbitrary function of two variables &(a, A):

gdl {a, A) dv = const.
T

From these integrals the following invariant functional is constructed:
FE‘F [% u; + O (a, 7.,)] dt. (1.10)
T

Below we show that with an appropriate choice of the function @ the steady-state flow (1.6)-(1.9) is the station-
ary point of the functional F. On the basis of the expression for the second variation the properties of F in
vicinity of this point can be studied. There are applications to the stability theory.

2. Stationary Flows. Let

A(x) = const, A(x) = const (2.1)

be two families of stream surfaces (1.8). By definition, the stream surface is such that at each of its points the
velocity is in the tangent plane. It is assumed that in the whole region 7 VA x VA = 0 and every stream line

of the flow (1.6) is an intersection of a pair of surfaces (2.1). The Bernoulli integral of Egs. (1.7) is written in
the form

S U+ P =H(4,4), (2.2)

where U = |U|; H is the Bernoulli constant, invariant along each stream line. It follows from (2.2), (1.7)
UxQ = yH = HyyA + H,VA, (2.3)

The indices A and A denote the corresponding partial derivatives. By performing the vector product of (2.3}
successively with VA and VA one obtains

AU = HoyAXyA, [(Q-9)AIU = —H4vAXVA. (2.4)
From (2.4) follows
(@-V)A = —H AH,. (2.5)
By introducing a function ¥(A, A) such that
¥, = H,/A, (2.6)
one can write any of the equalities (2.4) in the form
U = VAXVY, ' (2.7)

The pair of functions A&) and ¥ (x) constitutes the generalized stream function of a given three-dimensional
flow (see [6], p. 62).

3. Conditions of Extremum. The first variation of the functional (1.10), taken for the solution (1.6), is
written as follows

oF — S[Ui(‘iui + ®aba + D (a@i 04 Lo ?ﬂ’>1 .
g A A 011. 6zi J (3.1)

By means of (2.7) the integral (3.1) takes on the form

o = [ (cumga bus + Qnde) nndS + [ [@2— 1) 22 00; + (@2 — 270 ba dr. (3.2)
ot g ) T : ¢
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Both expressions in parentheses in the volume integral are zero if the arbitrary function ¢ is selected so that
it satisfies the equation

O+ H— DA =0. (3.3)
Indeed, taking the derivative of (3.3) with respect to the variable A and using (2.6) we get
Dpp = HyA =¥y, (3.4)
Integration of {3.4) leads to the equality ‘
Dy ="y (3.5)

where the arbitrary function of A arising in integration is included in ¥. Such an inclusion is possible by virtue
of the definition of ¥ (2.6). Taking (2.5) one can also show that

Dy — (V)P = (@ + H — ADy), = 0. (3.6)
If Egs. (3.5), (3.6) are satisfied the volume integral in (3.2) vanishes.

Further, we take such boundary conditions and limitations on the variations that are sufficient for the
surface integral in (3.2) to vanish. We give three types of such condifions where we utilize the remaining
arbitrary choice of the functions &(A, A), A(x), the properties of the flow (1.6) and its boundary o7.

1. If the boundary 87 is composed of one closed surface, then the function &, A) is chosen so that
¥ =®, =0 on dr. 3.7

The possibility of such choice depends on two factors. First, from the adopted definitions it follows that on 87
A and A are functionally dependent: ¢ (A, A) =0. Second, the function &(A, A), being the solution of Eq. (3.3),
is determined to within the term Af(A), where £(A) is an arbitrary function of the argument A.

2. The function A(x) is chosen so that the boundary 97 is one of the surfaces A =const. Then in order
for (3.2) to vanish it is appropriate to adopt also éa = Oon 9 2

A = const, 8¢ = 0 on dv. (3.8)

Consideration of a broader class of variations da is unnecessary from the point of view of the stability theory
since during actual motion the equality ¢ = const on 87 is always satisfied provided it was satisfied in the ini-
tial moment.

3. Let the intersection lines of the surfaces A = const and 87 be closed curves on which the velocity cir-
culation is denoted by I'(A). Then it suffices to satisfy the equalities

Q.n = 0, nxXy4 = (4), §T'(4) = 0 on dr. (3.9)

Here the function £(A) can be chosen arbitrarily. Conditions of the type (3.9) are conveniently used in formula-
tion of the variational principle for two-dimensional (planar, axisymmetric, etc.) flows where the requirement
8T =0 reduces to constancy in varying the velocity circulation on the contour of the boundary [7-9].

In this manner if for & in (1.10) one takes a function satisfying Eqg. (3.3) and adopts one of the groups of
the boundary conditions 1-3 (or their combination), then the functional F has for the given flow (1.6) its sta-
tionary value.

4. The Second Variation. For §%F we have

26 = [ [8usdu; + D (8a)? + Dy a (BN + 2045 0a8h + 20,8 dr, (@.1)
#6a dA | o5 dba
where 8 =9, o, + o; Tz, 822 = bo; 7z,

By simple operations and by using (3.3) we obtain
i
20°F = ”esuiasui — 2.0 x Q8sa + (Hydh + Habo)AH A] dv + H-f Q8a + 20, 80; | Sanids.
k3 at g
The derivatives & A and &y in (4.2) are expressed by the function ¥ with the aid of (3.5) and (3.6):

D, = (Q-y)¥. (4.3)
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The integrands (4.1) and (4.2) are quadratic forms of the variations éu and éa. In the cases of a definite sig-
nature of these forms the flow (1.6) is stable. Unfortunately, the term proportional to 6w éa in the volume in-
tegral in the general case rules out such a possibility. A definite signature takes place only in particular cases.

5. Planar Flows. Let the principal flow (1.6) and its perturbations (variations) be planar so that all func~-
tions entering (4.2} are independent of the Cartesian coordinate x5, Then one chooses

A= T3 ¥ = ‘Ir(xla ‘1"2)’ (5'1)

whereby ¥ assumes the meaning of the stream function of planar motion:

Uy = —0%dx,, Us = 0¥/oz,, Uy = 0.

From (5.1) follows that A = Q; = Q, and from (4.3), (3.3)
Q= 0Q), H=HQ), ¥ =10Q). (5.2)

As in planar motion the trajectories of the fluid particles do not leave the plane X3 = const, where, according
to (5.1), also A =const, one can assume 6a = 0. As a result (4.2) reduces to the form

2607 = ([ w2 + e + T2 (B dzdz, (5.3)

The symbol VA‘Y/VQ is interpreted according to (5.2). In the considered case of planar motion the original
functional F (1.10) as well as the expression for its second variation (5.3) agree with the formulas obtained
earlier [7]. The sufficient conditions of nonlinear stability, related to the definite signature of the form (5.3),
are given in [8].

6. Other Kinds of Motion with Symmetries. An expression for (4.2) analogous to (5.3). can be obtained
for motions with axial or helical symmetry. To consider the axially symmetric motion we introduce cylindrical
coordinates r, 6, z

Zy=12,2,=rcosB, z; =rsinh

and choose
A=8,¥="Y0, 2. (6.1)

Here ¥ is the stream function of the axisymmetric motion; rU: = v—-a‘F/arZ_rUT = 0¥/0z, Uy = 0; indices r, 6, z
denote the corresponding velocity components. From (6.1) it follows that A = (2-v)4 = Q/r, @ = Q, and a con-
dition of the type of (5.2) gives ¥ = ¥(Q/r). Since for axisymmetric motion the fluid particles are restricted
to the planes 4 = const, then analogously to the foregoing one can take 64 = 0. The second variation {4.2) takes
the form

e o+ i S (42)]
287 = [ [(pun)® + (0uy? + v () ] arde 6.2
A somewhat more complicated expression obtains for the motions with helical symmetry where one should as-
sume A =af + bz with constant a and b. The conditions of nonlinear stability due to the definite signature of
the form (6.2) and the analogous expression for the case of helical symmetry are given in [9].

7. Second Variation as Integral of the Linear Problem. The remarkable property of the guantity (4.1),
(4.2) is its invariance with respect to the linearized equations of motion. In order to formulate and prove this
fact it is convenient to introduce the following symbols. Letu,w,a, A be. infinitesimally small in amplitude
perturbations of the flow (1.6), described by the equations

au. ap
1 e
Du; + oz, Uo, 7z,

24 oA .
Da+'8x—auc¢=0, D}h‘}'a—za'lhx—o,
0, . v U, (7.1)
Do + Oz, Ua = Qo dz g + O aza"

= T -+ Uoc 2z
where A=Q; %, A== Q,-gf- + o %, and the fields U and u satisfy the no-leak conditions on &+
i 1 i
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Uini = U;N; = 0. (7.2)

Now we write the expression

2F E‘*j‘ (uil!,i + (DAA(ZB + (I)AA)&z + 2(I)AAQ}" + 2CDA('01' %z’) d'r, (7'3}
T %

obtainable from (4.1) by removing the symbols 6. The function &(A, A) in (7.3) satisfies (3.3) as before. By
direct calculation one shows that the derivative dF/dt, calculated by means of (7.1), (7.2), reduces to an in-
tegral of a divergence form which is then transformed into a surface integral yielding

dF du,; 89, aA oy
2 d_t = és; {T [ (Qa E-— Ug é;;) a — ;lUg 5;:;] — dgiuam} nidS.
If either (3.7) or (3.8) should hold on 97, then this surface integral vanishes and F is conserved (7.3). For the
motions with symmetry the integrals of the linearized equations of motion are obtained from (5.3), (6.2).

8. Integral of Motion in Terms of Lagrangian Displacements. The existence of the integral of the type
(7.3) for {7.1) can be expected on the basis of time independence of the coefficients (7.1). The integral (7.3}
plays the role of energy. In this treatment the dependence of (7.2) on the fields of scalar admixtures  and A
will be unexpected and artificial. It turns out, however, that the role of these fields consists in fact in an im-
plicit introduction of the Lagrangian variables. ‘

The Lagrangian displacements of the fluid particles are most naturally introduced by considering the con-
nections between the Lagrangian X and Eulerian x coordinates of the principal and perturbed motion. Let the
function x(X, t} and the inverse X(x, t) describe the principal (unperturbed) motion of the fluid. Further, let

(X, § =x(X, § + ¥X, 3 (8.1)

be the perturbed motion with the displacement field (X, t). The latter, with the aid of the function X, t), is
expressed in the form £(x, t). By the same token the field of the Lagrangian displacements of fluid particles
is represented as a function of the Eulerian coordinates. Let now Q{x, t) be an arbifrary characteristic of the
medium defined on the perturbed motion (8.1), and Q,fx, t} be the same characteristic on the unperturbed mo-
tion. The difference g = Qx, t) — Qyx, t) is called the Eulerian perturbation of the field Q. At the same time
the difference AQ = Q(x1, ) — Qu(x, t) with x; = x 4+ §(x, t) (8.1) is called the Lagrangian perturbation of the
characteristic Q. If the perturbations are small the following relation is valid to first order

a
AQ=¢q+ & a% (8.2)

If the quantity Q is conserved in each fluid particle and the perturbations consist solely of displacements of par-
ticles, then AQ =0 and

a9
=—lag, (8.3)
For the velocity field we have the relations
aU, dE, oL, 9,
Ay =ui + Bagey A= = 57 + Vo 5 (8.4)

where Auj is the Lagrangian perturbation of velocity and Uj is the velocity field of the unperturbed motion. The
first of equalities (8.4) follows from (8.2), the second one from the definition of the field £&. From (8.4) it follows
that

3, , au; 98,
W=ui+{Us§}iEuiTga§a‘_ “Fz (8.5)

The braces {A, B} denote the Poisson brackets of the vector fields A and B. The conditions of no leak at the
boundary remove the normal displacements on 37, which yields to first order

gn=0. (8.6)

The equations for the perturbed vorticity (7.1) are rewritten in the form
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o, = {U, 0} + {u, Q). (8.7)
Substituting in (8.7) the expression for u from (8.5), after some transformations (using the Jaeobi identities for
the Poisson brackets and equality {U, & } =0 for @ = w — {§, 2} one obtains the equation ay = {U, @ }. If
one chooses @ = 0, then the following relation will hold
o= {§ 9} (8.8)
This choice is equivalent to defining the initial value ¢(x, 0) ina given field w, 0).

For the perturbations of the fields ¢ and A (7.1) we obtain in correspondence with (8.3)
) dA oA
a=—§53?1_, A‘=‘_§ia_zi' (8.9)

One can verify that the relations (8.9), (8.8), (8.5) are consistent with Egs. (7.1) and with each other. In par-
ticular, if (8.5) is satisfied it guarantees the validity of the equations for a, A, and w from (7.1), and (8.8) leads
to the situation where the second of Egs. (8.9) follows from the first. A discussion of the Lagrangian displace-
ments in a similar framework is given in [10, Sec. 13].

Substitution of (8.8), (8.9) into (7.3) and simple transformations lead to the result
9F = j;(ufw + @iesnlskn) 4T + S(Z‘m-’I"—Qﬁgk "’—“i)an-ds.
—1 il ’ iCikml rSm. iy} i TSk 3ay, i (8.10)

If the conditions (3.7) or (3.8) are assumed to hold on 87, then the surface integral vanishes and (8.10) agrees
with the expression for the second variation of energy given in [3].

9. Integrals of Motion for Flows of Stratified Fluids. It is shown in {11, 12] that the exact equations and
boundary condifions describing translationally invariant motion of a homogeneous ideal incompressible fluid in
a rotating coordinate system can be reduced by simple transformations to equations and boundary conditions
for planar motion of a stratified fluid (written in the Boussinesq approximation). Using this equivalence one
can formulate some of the results of this work for the stratified fluid.

In particular, an interesting form is assumed by the conserved functional, obtained from the integral of
type (7.3), {(8.10), for linear perturbations of the plane-parallel flow of the stratified fluid. In order to
write it down we introduce a system of Cartesian coordinates x, y. Let the planar motion of the ideal incom-
pressible stratified fluid take place in the region 0 < y < H in an external homogeneous gravitational field g =
(0, g). The plane-parallel motion is given by two arbitrary functions U(y) and py(y):

U =Uy), V=0, po = po(y)- (9.1)

Here U and V are the x and y components of velocity of the principal flow; py(y) is its density distribution. By
U, v, p, P, w = Vx — Uy We denote the perturbations of the x and y components of velocity, density, pressure and
vortex satisfying the system of equations linearized on (9.1) and the no-leak boundary conditions:

Du + U'v= —p,, Dv = —py + P&, 9.2)
Dp+p{,v=0, ux+vy=0,D_=.§-t+U§£;
v=20 for y=0; H (9.3)

The prime denotes ordinary derivatives with respect to y. By direct calculations one can verify that in the prob-
lem (9.2), (9.3) the following functional does not depend on time

. —Uu”
f @+ 2 oy | dzdy. (9.4)
(e0) 0 _

Moreover, one assumes that the functions u, v, p, w are either periodic in x (then the integral is taken over
the period), or decay fast enough for x — + «. From the form of (9.4) and the Galilean invariance it follows
that the following integral is also conserved

UII 5 —-2-
j? [(_9;)—2 o+ o pco] dz.dy. (9.5)
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It can be obtained independently from the functional of the type (1.10) for the momentum.

By analogy with (9.4), (9.5) one can write down the integrals of the full equations of motion of the stratified
fluid linearized on (9.1) (without the Boussinesq approximation). By virtue of the equations

po(Du 4 U'v) = —p,, peDv= —py, + pg,
Us + vy =0, Dp + pw =0 '

and the boundary conditions (9.3) the following functional is conserved

S[po (@ + V) + WU+ 86— T PP — ?gﬂpjl dz dy, (9.6)

(o) 8
where o = poe® — po¥t — (pU)y. From (9.6) follows an integral of the type (9.5)
OYY o, 2 ] :
, + =op |dzdy.
‘S‘[ (po)2 ° Po i

It is apparent that for pig > 0 (stable stratification in the sense of upward decreasing density) the forms
(9.4), (9.8) are positive definite only for the state of rest U = 0 (or a uniform flow U = const). Moreover, the
second variation (9.6) takes the form [9]

f[po(zﬂ )+ pﬁ,-pz] dz dy.
. 1]

Imposing an arbitrarily small velocity shift U' = 0 destroys the positive definiteness of the forms in the inte-
grands of (9.4), (9.6). The Richardson number Ri =pig/ (U"? is no criterion of the positive definiteness (and
hence stability). This means that the stability criterion Ri > 1/4 [13] is not energetic (in contrast to the Ray~
leigh criterion of the inflection point, resulting from (5.3), or to the "centrifugal™ stability condition [4, 9]).
This fact seems quite surprising if one remembers that the physical sense of Ri is usually explained by en-
ergetic representations [14].

In conclusion we make a few remarks completing the presented results and clarifying their connection
with other works.

1. Beside (5.3), (6.2) there are other cases of definite signature of the second variation of the functional
(1.10). These cases, like those discussed in Sections 5, 6, correspond to the motion with symmetries and sat-
isfy the conditions of "centrifugal™ nonlinear stability, obtained in {2]. For instance, for the rotationally sym-
metric variations of the flow with circular stream lines (with a field of the angular velocity component U(r))
one assumes in (1.10) & =&(a), a=ruy. As a result

2
s — [(au,)z + oy + P (&69)2} drdz,

where the symbols of Section 6 are used. The positive definiteness of this expression is obtained if the Rayleigh
criterion of "centrifugal" stability (U?r?), > 0 is satisfied. One can also check the conservation of 62F by virtue
of the linearized equations of the rotationally symmetric motion.

2. In [3] a variational principle is proposed according to which the energy of stationary flows is extremal
among the so-called "equivortical" flows. The form of the integral (1.10) is natural from the point of view of
this principle as the absolufe extremum of the functional (1.10) can be considered as a conditional extremum of
energy with the constraint

‘S‘CD (@, A) dv = const.

This constraint is akin to the condition of "equivorticity” [3], although weaker.

3. In [3] an expression is obtained for the second variation of energy for increases of the velocity field
constrained by the conditions of "equivorticity"

8F = j [6“4611/;_ + GmieikmUhfm] dv
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where fy, are the "mapping coordinates" [3]. After the removal of the symbols é and replacement of Imbyém
it turns out that this functional is conserved by virtue of the linearized equations of motion (7.1), (7.2), supple-
mented by the relations (8.5), (8.6), (8.8). The equations for ¢ and A from (7.1) are not given. This fact is
noted in [3]. The aforementioned reduction of 6%F (4.1) to a similar expression (8.10) clarifies the fact of con-
servation of 6°E for perturbations with arbitrary initial data (and not only "equivortical®).

4. A variational principle for flows of a rotating fluid inhomogeneous in density is given also in [15].
The functional of the type (1.10) is built from the energy and the integral of an arbitrary function of the argu-
ment @ - Vp, where p is density, w is vorticity. As a result of the discussion in [15] one obtains a number of
interesting cases. They cover, e.g., the homogeneous fluid and the planar motion of a stratified fluid, corre-
sponding to w« Vp = 0.

5. In direct calculation of the time derivative of energy by applying the linearized equations of motion
{7.1) there arise everywhere the Reynolds stresses

d A U,
dtf dr —‘g hu,uhd‘v

The existence of the integral (7.3) means that these stresses are expressed in the form of a time derivative of
the corresponding functional so that the equation of total energy is at once integrated.

6. After the transition in (9.4)-(9.6) to a spectral problem for the normal waves (the fields of perturba~
tions proportional to expli(kx — wt}]} one directly obtains the well-known spectral estimates of Singh [13, 16].

7. The addition of the scalar field a increases the number of "degrees of freedom" of the functional F
and, consequently, diminishes the likelihood of existence of positive-definite forms. As is shown in Section 7,
the role of @ consists in an implicit introduction of the Lagrangian variables. The presence of symmetry of
motion permits one to remove these variables and to obtain conservation laws in terms of the velocity and den-
sity fields only. In absence of symmetry such a removal cannot be performed. Perhaps this is the imperfec-
tion of the applied method and in general case Egs. (7.1) have integrals that do not contain Lagrangian charac-
teristics of the flow. Undoubfedly, finding such integrals would be of interest.
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