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In th is  a r t i c l e  we study the p r o p e r t i e s  of the i n t eg ra l s  of motion of an idea l  i n c o m p r e s s i b l e  fluid useful 
f r om the point of view of s t ab i l i t y  p r o b l e m s .  F r o m  the i n t eg ra l s  of motion we cons t ruc t  a functional whose 
s t a t i ona ry  point is  the given s t e a d y - s t a t e  flow of the fluid. In c a s e s  where  the s igna ture  of the second v a r i a -  
t ion is defined th is  functional can take the ro l e  of the Lyapunov function [1, 2] in the p r o b i e m  of de te rmin ing  the 
c l a s s e s  of s t ab le  f lows.  The ana lys i s  of the second var ia t ion  l eads  to the conclusion that  in gene ra l  i t s  s igna tu re  
is  undefined. It is  however  defined for  spec i a l  c l a s s e s  of motion c h a r a c t e r i z e d  by the p r e s e n c e  of one of the 
s y m m e t r y  types .  The genera l  e x p r e s s i o n s  for  the second var ia t ion  a r e  i n t eg ra l s  of the equations of motion 
l i nea r i z ed  for  the given s t a t i ona ry  flow. Var ious  fo rms  of these  i n t eg ra l s  a r e  analyzed  and co r r e spond ing  in -  
t e g r a l s  a r e  given for  the flow of a fluid continuously s t r a t i f i ed  in densi ty  in the g rav i t a t iona l  f ield.  We d i scuss  
the hydrodynamica l  meaning of the r e s u l t s  and the i r  connection with the va r i a t iona l  p r inc ip l e  [3, 4]. The work  
has a methodologica l  c h a r a c t e r .  

1. Fundamenta l  Equat ions.  Let  us cons ide r  the t h r e e - d i m e n s i o n a l  motion of a homogeneous in densi ty,  
ideal  and i n c o m p r e s s i b l e  fluid in reg ion  T with a fixed r ig id  boundary 0T. The following symbols  a r e  used: 
xl ,  x2, x 3 and t a r e  the C a r t e s i a n  coord ina tes  and t ime;  n = (n l, n 2, n 3) i s  the no rma l  to DT; p and u = (u 1, u 2, u~) 
is  the p r e s s u r e  and veloci ty  f ield.  The equations of motion a r e  of the fo rm 

D u - - - - V p ,  d i v u = 0 ~  D ~ - ~  (1.i) 

On the boundary 3 z the following condit ion a s s u r e s  no leaking:  

u . n  ~ utn~ = 0. (1.2) 

Repea ted  indices  of v e c t o r s  and t e n s o r s  a r e  eve rywhere  unders tood as  summat ion  ind ices .  

Let  a(x, t) be a s c a l a r  function whose values  a r e  conse rved  in each  fluid pa r t i c l e :  

D a  --- O. (1.3) 

By means  of tile vo r t i c i ty  f ie ld  ~ one more  function is in t roduced 

X(x, t) ~ (o .v)a~ (1.4) 

which a lso  c o n s e r v e s  i ts  values  in each fluid p a r t i c l e  

D~ = 0. (1.5) 

In p a r t i c u l a r ,  the field a can be cons ide red  as one of the Lagrangian  coord ina tes  of fluid p a r t i c l e s .  The r e l a -  
t ions  (1.4), (1.5) then a s s u m e  the sense  of one of the components  of the Cauchy in t eg ra l  of the Eu le r  equations [5]. 

The s t a t i ona ry  solut ions  of the equations (1.1)-(1.5) we denote in the following manner  

u = U ( x ) ,  ~ = r~(x) ,  p = p ( x ) ,  a = A ( x ) ,  ( 1 . 6 )  

----A(x), U = (U1, U2, U3), ~ = (Q1, P.3, ~23). 

The functions in (1.6) sa t i s fy ,  as follows f rom (1.1)-(1.5), the following equations and boundary condit ions:  

(U.V)U = --VP, div U = 0; (1.7) 
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(U.V)A = 0, (U.V)A = 0; 

U - n  0 o~ aT, 

In the general  case the init ial-  and boundary-value problem for  (1.1)-(1.5) has two integrals :  
is energy  

2E ----- ~ u#~d'~ = Const, 

and the second is defined using an a rb i t r a ry  function of two var iables  r  k): 

S t l) (a, X) dr = const. 
,$ 

F r o m  these in tegrals  the following invariant  functional is constructed:  

(z.s) 

(1.9) 

the f i rs t  one 

F-~ ~[-~u#, + aP(a, ~,)] d,. (I.i0) 

Below we show that with an appropria te  choice of the function ~ the s teady-s ta te  flow (1.6)-(1.9) is the stat ion- 
a ry  point of the functional F. On the basis  of the express ion  for the second variat ion the p roper t i es  of F in 
vicinity Of this point can be studied. There  are  applications to the stabil i ty theory.  

2. Stat ionary Flows. Let 

A(x) = const, A(x) = const (2.1) 

be two famil ies  of s t r eam surfaces  (1.8). By definition, the s t r e a m  surface  is such that at each of its points the 
velocity is in the tangent plane. It is assumed that in the whole region V VA x V A  ~ 0 and every  s t r eam line 
of the flow (1.6) is an intersect ion of a pai r  of sur faces  (2.1). The Bernoulli  integral  of Eqs. (1.7) is wri t ten in 
the form 

+ U 2 + P = H (AI A), 

where U = ] U I ;  H is the Bernoulli  constant,  invariant  along each s t r e a m  line. It follows f rom (2.2), (1.7) 

U • • = V H = HAV A + HAVA. 

The indices A and A denote the corresponding part ia l  der ivat ives .  By per forming the vector  product  of (2.3) 
success ive ly  with VA and VA one obtains 

F r o m  (2.4) follows 

AU = H A v A  • A, [(fl 'v)A] U = " H A V  A • 

(Q.v)A = --HAATttA. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

TA -- HA/A, (2.6) 

By introducing a function ~(A, A) such that 

one can write any of the equalities (2.4) in the fo rm 

U = VA x V ~ .  (2.7) 

The pair  of functions A(x) and ~ (x) consti tutes the general ized s t r eam function of a given three-d imensional  
flow (see [6], p. 62). 

3. Conditions of Extremum. The f i rs t  variat ion of the functional (1.10), taken for the solution (1.6), is 
written as follows 

aF = UiSui + (I)aSa + OA \ , azi + a s  -~zi) j d% (3.1) 

By means of (2.7) the integral  (3.1) takes  on the fo rm 

6 F =  �9 nmdS+ ((1)a- ~)a~-a(o~-+ ((Iaa- f~ .V(1)A)6a d~. (3.2) 
01: 
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Both express ions  in parentheses  in the volume integral  are  zero  ff the a rb i t r a ry  function @ is selected so that 

it sa t isf ies  the equation 

cI) + H -- (I)AA = 0. (3.3) 

Indeed, taking the derivat ive of (3.3) with r e spec t  to the variable A and using (2.6) we get 

(1)An = Hj./A = ~A. (3.4) 

Integration of (3.4) leads to the equality 

OA = ~,: (3.5) 

where the a r b i t r a r y  function of A ar is ing in integration is included in ~ .  Such an inclusion is possible by virtue 
of the definition of ~ (2.6). Taking (2.5) one can also show that 

q)A -- (fl'V)agA = (q) + H -- A(PA)A = 0. (3.6) 

If Eqs. (3.5), (3.6) are  satisfied the volume integral  in (3.2) vanishes.  

Fur ther ,  we take such boundary conditions and l imitat ions on the variat ions that are  sufficient for the 
sur face  integral  in (3.2) to vanish. We give three types of such conditions where we utilize the remaining 
a rb i t r a ry  choice of the functions ~(A, A), A(x), the proper t ies  of the flow (1.6) and its boundary 0T. 

1. If the boundary Or is composed of one closed surface,  then the function ~(A, A) is chosen so that 

= r 0 on 0~. (3.7) 

The possibi l i ty of such choice depends on two fac tors .  F i rs t ,  f rom the adopted definitions it follows that on 0T 
A and A are functionally dependent: ~p(A, A) = 0. Second, the function r A), being the solution of Eq. (3.3), 
is determined to within the t e r m  Af(A), whore f(A) is an a rb i t r a ry  function of the argument  A. 

2. The function A(x) is chosen so that the boundary OT is one of the sur faces  A = const. Then in o rde r  
for (3.2) to vanish it is appropriate  to adopt also 6a = 0 on O T: 

A =cons t :  6 a = 0  on 0~. (3.8) 

Considerat ion of a b roader  c lass  of variat ions 6a is unnecessary  f rom the point of view of the stability theory  
since during actual motion the equality a = const on 0r  is always satisfied provided it was satisfied in the ini-  
tial moment.  

3. Let the intersect ion lines of the sur faces  A = const  and 0T be closed curves  on which the velocity c i r -  
culation is denoted by F(A). Then it suffices to sat isfy the equalities 

f~in = 0, n •  A = f(A), 8r(A) = 0 on 0z. (3.9) 

Here the function f(A) can be chosen a rb i t ra r i ly .  Conditions of the type (3.9) are  conveniently used in fo rmula -  
tion of the variational principle for  two-dimensional  (planar, ax isymmetr ic ,  etc.) flows where the requi rement  
6 F = 0 reduces  to constancy in varying the velocity circulat ion on the contour of the boundary [7-9]. 

In this manner  if for ~ in (1.10) one takes a function sat isfying Eq. (3.3) and adopts one of the groups of 
the boundary conditions 1-3 (or their  combination), then the functional F has for the given flow (1.6) its s ta-  
t ionary  value. 

4. The Second Variation. For  62F we have 

262F = S [6u~6u~ + fI)AA (~a) 2 -~ (I)AA (~)~)2 -~ 2(:l)Ah~a6)~ -b 2qbA62~ ] dr, (4.1) 

~ 6 a  . o O A  06a 
where 6~ - -  ~ ~ .  + or --'o~ i , 6z~ ~ &ol ~ 

By simple operat ions and by using (3.3) we obtain 

26~F=~[6u~6ui - 2  -x-UX f~6o)6a + (H~6~ + HA6a)2/AHAldv, + f [ - ~  ~i6a + 2(1)~6o)J6an.flS. (4.2) 

The der ivat ives  OA and OA in (4.2) are  expressed by the function ~ with the aid of (3.5) and (3.6): 

cA =i(~" v)~. (4.3) 
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The integrands (4.1) and (4.2) are  quadratic fo rms  of the variat ions 6u and 6a.  In the cases  of a definite s ig-  
nature of these fo rms  the flow (1.6) is stable. Unfortunately, the t e r m  proport ional  to 6~ 6a in the volume in- 
t egra l  in the general  case rules  out such a possibil i ty.  A definite s ignature takes place only in par t icu lar  cases .  

5. P lanar  Flows. Let the principal  flow (1.6) and its per turbat ions  (variations) be planar  so that all func- 
t ions entering (4.2) a re  independent of the Car tes ian  coordinate x S. Then one chooses  

A -~ zs, W = XF(xl, z2), (5.1) 

whereby ~ assumes  the meaning of the s t r e a m  function of planar  motion: 

U1 = --011f/0z2,  U2 = 0/I*r U 3 ~--- 0 .  

F r o m  (5.1) follows that A = f4 -~- f~, and f rom (4.3), (3.3) 

r = r  H = H(~ ) ,  ~ = ~Cq). (5.2)  

As in planar  motion the t r a j ec to r i e s  of the fluid par t i c les  do not leave th e plane x S = const, where, according 
to (5.1), also A =cons t ,  one can assume 6a = 0. As a resul t  (4.2) reduces  to the fo rm 

<,.,> 

The symbol  VW/VQ is interpreted according to (5.2). In the considered ease of p lanar  motion the original  
functional F (1.10) as well as the express ion for its second variat ion (5.3) agree with the formulas  obtained 
ea r l i e r  [7]. The sufficient conditions of nonlinear stability, related to the definite signature of the fo rm (5.3), 
are  given in [8]. 

6. Other Kinds of Motion with S y m m e t r i e s .  An express ion  for (4.2) analogous to (5 .3)can be obtained 
for motions with axial or  helical symmet ry .  To consider  the axially symmet r i c  motion we introduce cyl indrical  
coordinates  r, 0, z 

and choose 

x , - - z ,  x 2 = r c o s 0 ,  x s : r s i n 0  

A = 0, V = XF(r, z). (6.1) 

Here ~ is the s t r eam function of the ax i symmetr ic  motion; rUz = --OxV}Or, rUT = OW/Oz, Uo ~ 0; indices r ,  0, z 
denote the corresponding velocity components.  F r o m  (6.1) it follows that A = (fl.v)A = fl/r, fl ~--- fl0 and a con- 
dition of the type of (5.2) gives W ----' ~(fl/r). Since for ax i symmet r ic  motion the fluid par t ic les  are  res t r i c ted  
to the planes 8 = eonst, then analogously to the foregoing one can take 6 a -- 0. The second variat ion (4.2) takes 
the fo rm 

V(•/r) \ r / j (6.2) 

A somewhat more  complicated express ion obtains for  the motions with helical s y m m e t r y  where one should a s -  
sume A = aO + bz with constant a and b. The conditions of nonlinear stabili ty due to the definite signature of 
the form (6.2) and the analogous express ion for  the case of helical s y m m e t r y  are  given in [9]. 

7. Second Variation as Integral  of the Linear  Problem.  The remarkable  proper ty  of the quantity (4.1), 
(4.2) is its invariance with respec t  to the l inearized equations of motion. In order  to formulate  and prove this 
fact it is  convenient to introduce the following symbols .  Let  u, w, a ,  ~ be  infinitesimally small  in amplitude 
per turbat ions  of the flow (1.6), descr ibed by the equations 

ou~ Op 
Dui + ~x~ us ~- - -  ~-(~ 

OA OA D a + ~ u ~ = O ,  D;~ + ~ u ~ : O ,  

a~ - ou~ oU~ (7.1) 
Do,~ + N u= = f]= ~ + r ox.-- ., 

a o 
D ==- --~i- + U~ ~ ,  

~A . .Q 8a 8A where A ~ ~2~ ~z=-~' ~ -  ~ + c0,~-xi, and the fields U and u sat isfy  the no- leak  conditions on 0T 
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Now we write the express ion 

U~n~ = u~ni = 0. (7.2) 

2F ~_ y (uiu~ + cD~Aa ~ + q)~A~2 + 2(I)aAa~ , + 2('p~(o~_~z~) d.r, (7.3) 

obtainable frora (4.D by removing  the symbols  5.  The function 6(A, A) in (7.3) sa t is f ies  (3.3) as before. By 
d i rec t  calculation one shows that the derivat ive d F / d t ,  calculated by means of (7.1), (7.2), reduces  to an in- 
tegra l  of a diw~rgence form which is then t r ans fo rmed  into a surface  integral  yielding 

dF / 0~ a ~  a --  OA --  a~iuc~'~z~} nidS. 

If e i ther  (3.7) or  (3.8) should hold on 0T, then this surface  integral  vanishes and F is conserved (7.3). For  the 
motions with s y m m e t r y  the in tegrals  of the l inearized equations of motion are  obtained f rom (5.3), (6.2). 

8. Integral  of Motion in T e r m s  of Lagrangian Displacements :  The existence of the integral of the type 
(7.3) for  (7.1) can be expected on the basis  of t ime independence of the coefficients (7.1). The integral  (7.3) 
plays the role of energy.  In this t rea tment  the dependence of (7.2) on the fields of sca la r  admixtures a and X 
will be unexpected and artif icial .  It turns  out, however,  that the role  of these fields consis ts  in fact in an im-  
plicit introduction of the Lagrangian var iables .  

The Lagrangian displacements  of the fluid par t ic les  are  most  naturally introduced by considering the con- 
nections between the Lagrangian X and Euler ian x coordinates  of the principal  and per turbed motion. Let the 
function x(X, t) and the inverse  X(x, t) descr ibe  the principal  (unperturbed) motion of the fluid. Fur ther ,  let 

xI(X , t) = x(X, t) ~.- ~(X, t) (8.1) 

be the per turbed motion with the displacement  field ~(X, t). The lat ter ,  with the aid of the function X(x, t), is 
expressed  in tim fo rm ~(x, t). By the same token the field of the L a g r a n ~ a n  displacements  of fluid par t ic les  
is represented  as a function of the Euler ian coordinates .  Let now Q(x, t) be an a rb i t r a ry  charac te r i s t ic  of the 
medium defined o~_ the per turbed motion (8.1), and Q0(x, t) be the same charac te r i s t i c  on the unperturbed mo-  
tion. The difference q - Q(x, t) - Q0(x, t) is called the Euler ian perturbat ion of the field Q. At the same t ime 
the difference A0 ~--- Q(x~, t) - Q0(x, t) with x~ = x + ~(x, t) (8.1) is called the Lagrangian perturbat ion of the 
charac te r i s t i c  Q. If the per turbat ions  are  smal l  the following relat ion is valid to f i rs t  o rde r  

00 

If the quantity Q is conserved in each fluid par t ic le  and the per turbat ions consis t  solely of displacements  of p a r -  
t ic les ,  then AQ = 0 and 

For  the velocfl;y field we have the relat ions 

q = ~= ax a. (8.3) 

Au~=u~ +~=~, Au~=.-.~= o-T +U=~ (8.4) 

where Au i is the Lagrangian per turbat ion of velocity and Ui is the velocity field of the unperturbed motion. The 
f i r s t  of equalities (8.4) follows f rom (8.2), the second one f rom the definition of the field ~. F rom (8.4) it follows 
that 

o--T = ~ + {U, ~}~--  u~ + ~ ~ - -  o~, ~-Tj (8.5) 

{A, B} denote the Poisson brackets  of the vector  fields A and B. The conditions of no leak at the 

{8.6) 

The braces  
boundary remove the normal  displacements  on 0T, which yields to f i rs t  o rde r  

~ . n  - -  O. 

The equations for the per turbed vort ici ty (7.1) are  rewri t ten  in the form 
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~)t = {U,  co} ~- {u, fl}. (8 .7)  

Substituting in (8.7) the express ion for  u f rom (8.5), af ter  some t rans format ions  (using the Jaeobi  identities fo r  
the Poisson brackets  and equality {U, f~ ~ =0  for  a - ~ - {~, U} one obtains the equation e~ t = {tl ,  a }. If 
one chooses  a -- 0, then the following relat ion will hold 

o = {~, Q}.  (8 .8 )  

This choice is equivalent to defining the initial value ${x, 0) in a given field ~{x, 0). 

For  the per turbat ions of the fields a and X (7.1) we obtain in cor respondence  with (8.3) 

OA OA 
a = -- ~i Ox--'~.' ~ = ~-- ~iO~x i" (8.9) 

One can verify that the relat ions (8.9), (8.8), (8.5) are  consis tent  with Eqs.  (7.1) and with each other.  In p a r -  
t icular ,  if (8.5) is sat isfied it guarantees  the validity of the equations for  a ,  X, and w f rom (7.1), and (8.8) leads 
to the situation where the second of Eqs. (8.9) follows f rom the f i rs t .  A discussion of the Lagrangian displace-  
ments in a s imi l a r  f r amework  is given in [10, Sec. 13]. 

Substitution of (8.8), (8.9) into (7.3) and simple t ransformat ions  lead to the resul t  

�9 . p !  OV'] 

(8.10) 

If the conditions (3.7) or  (3.8) are  assumed to  hold on OT, then the surface  Integral  vanishes and (8.10) agrees  
with the express ion  for the second variat ion of energy given in  [3]. 

9. Integrals  of Motion for  Flows of Stratified Fluids. It is shown in [11, 12] that the exact  equations and 
boundary conditions descr ib ing translationaI1y invariant  motion of a homogeneous ideal incompress ib le  fluid in 
a ro ta t ing  coordinate sys t em can be reduced by simple t ransformat ions  to equations and boundary conditions 
for  p lanar  motion of a s trat if ied fluid (written in the Boussinesq approximation). Using this equivalence one 
can formulate  some of the resul ts  of this work  for  the strat if ied fluid. 

In par t icu lar ,  an interest ing fo rm is assumed by the conserved functional, obtained f rom the integral  of 
type (7.3), (8.10), for  l inear per turbat ions  of the p lane-para l le l  flow of the stratif ied fluid. In o rder  to 
write it down we introduce a sys tem of Car tes ian coordinates x, y. Let the p lanar  motion of the ideal incom- 
p ress ib le  strat if ied fluid take place in the region 0 < y < H in an external homogeneous gravitat ional  field g = 
(0, g). The plane-para l le l  motion is  given by two a rb i t r a ry  functions U(y) and p0(y): 

U = U(y),  V ~ O, Po = po(y). (9.1) 

Here U and V are  the x and y components of velocity of the principal  flow; P0{Y) is its density distribution. By 
u, v, p ,  p, w = v x - Uy we denote the per turbat ions  of the x and y components of velocity, density, p r e s s u r e  and 
vortex satisfying the sys tem of equations l inear ized on (9.1) and the no- leak boundary conditions: 

D u  + U 'v  = - - P x ,  D v  = - - p y  + pg, (9.2) 

, O U 0" Dp -t- pov = O, ux -]- % = O, D -~- ~ ~- ~ ,  

v = 0  for y = 0 ;  H (9.3) 

The pr ime denotes o rd inary  der ivat ives  with r e spec t  to y. By di rec t  calculations one can verify that in the prob-  
lem (9.2), (9.3) the following functional does not depend on t ime 

+ (0;) 

Moreover ,  one a s sumes  that the functions u, v, p ,  o9 are  ei ther  periodic in x (then the integral  is taken over  
the period), or  decay fast  enough for x ~ + ~. F r o m  the fo rm of (9.4) and the Galilean invariance it follows 
that the following integral  is also conserved 

(9.5) 
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It can be obtained independently f r o m  the functional of the Wpe (1.10) for  the momentum.  

By analogy with (9.4), (9.5) one can wri te  down the in tegra l s  of the full equations of motion of the s t ra t i f ied  
fluid l inear ized  on (9.1) (without the Bouss inesq approximat ion) .  By vi r tue  of the equations 

po(Du -1- U'v) = --Px, poDv = --py -I- 9g, 
t 

Ux + V u =  O, Dp + po v =  O 

and the boundary conditions (9,3) the following functional is conse rved  

~ [ (uu" + g)'P~ -- u (po u) " 92 -- 2--U, ~p] dx dy, (9.6) 

where  ~ ~90~) - -  9'0u --  (9U)~. F r o m  (9.6) follows an in tegra l  of the type {9.5) 

S [ (P~ p 2 §  
L 

I t  is apparen t  that  for  p~g > 0 (stable s t ra t i f ica t ion  in the sense  of upward dec reas ing  density) the f o r m s  
(9.4), (9.6) a r e  pos i t ive  definite only fo r  the s ta te  of r e s t  U _= 0 (or a uni form flow U -- const).  Mereove r ,  the 
second var ia t ion  (9.6) takes  the f o r m  [9] 

y [9oi(U~ + v~) + ~o 92] dx@. 

Imposing  an a r b i t r a r i l y  sma l l  veloci ty  shif t  U' g 0 de s t roys  the pos i t ive  def in i teness  of the f o r m s  in the in te -  
grands  of (9.4), (9.6). The Richardson  num be r  Ri - P ' o g / (  U')2 is  no c r i t e r i on  of the pos i t ive  def ini teness  (and 
hence stabi l i ty) .  This  means  that  the s tabi l i ty  c r i t e r ion  Ri > 1/4  [13] is not energet ic  (in con t ras t  to the R a y -  
leigh c r i t e r ion  of the inflection point, resu l t ing  f r o m  (5.3), or  to the "centr i fugal"  s tabi l i ty  condition [4, 9]). 
This fact  s e e m s  quite s u r p r i s i n g  if one r e m e m b e r s  that  the physica l  sense  of Ri is usual ly  explained by en- 
e rge t i c  r ep re sen t a t i ons  [14]. 

In conclusion we make  a few r e m a r k s  complet ing the p resen ted  r e su l t s  and c lar i fy ing  the i r  connection 
with o ther  works .  

1. Beside (5.3), (6.2) t he re  a re  o ther  c a se s  of definite s ignature  of the second var ia t ion  of the functional 
(1.10). These  ca se s ,  like those d iscussed  in Sections 5, 6, cor respond  to the motion with s y m m e t r i e s  and s a t -  
isf_y the conditions of "centr i fugal"  nonl inear  s tabi l i ty ,  obtained in [9]. For  instance,  for  the ro ta t ional ly  s y m -  
me t r i c  var ia t ions  of the flow with c i r c u l a r  s t r e a m  lines (with a field of the angular  veloci ty component  U(r)) 
one a s s u m e s  in (1.10) 0~ = r  a_-- ru  0. As a r e su l t  

4U2 r 

where  the symbols  of Section 6 a r e  used. The pos i t ive  def in i teness  of this exp res s ion  is obtained if the Rayleigh 
c r i t e r ion  of "cent r i fuga l"  s tabi l i ty  (U2r2) r > 0 is sa t i s f ied .  One can also check the conserva t ion  of 62F by vir tue 
of the l inear ized  equations of the ro ta t ional ly  s y m m e t r i c  motion.  

2. In [3] a var ia t ional  pr inc ip le  is p roposed  according  to which the energy  of s t a t ionary  flows is ex t r ema l  
among the so -ca l l ed  "equivor t ica l"  flows. The f o r m  of the in tegral  (1.10) is  na tura l  f r o m  the point of view of 
this pr inc ip le  as the absolute e x t r e m u m  of the functional (1.10) can be cons idered  as a conditional e x t r e m u m  of 
ene rgy  with the cons t ra in t  

J O (a, ~) = d~ const. 

This  cons t ra in t  is akin to the condition of "equivor t ic i ty"  [3], although weaker .  

3. In [3] an expres s ion  is  obtained for  the second var ia t ion  of energy  for  i n c r e a s e s  of the veloci ty field 
cons t ra ined  by the conditions of "equivor t ie i ty"  

= ~ [6u~6u~ + 6o)ie~hmU~],~ ] d'~ 62E 
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where  fm a re  the "mapping  coord ina tes"  [3]. Af ter  the r emova l  of the symbols  5 and r e p l a c e m e n t  of  fm by ~ m 
it tu rns  out that  this  functional i s  conse rved  by vi r tue  of the l inear ized  equat ions  of motion (7.1), (7.2), supple -  
mented by the re la t ions  (8.5), (8.6), (8.8). The equations fo r  a and ~ f r o m  (7.1) a r e  not given. This  fact  is 
noted in [3]. The aforement ioned  reduct ion of 6 2F (4.1) to a s i m i l a r  exp res s ion  (8.10) c l a r i f i e s  the fact  of con-  
s e rva t ion  of 6 2E for  pe r tu rba t ions  with a r b i t r a r y  initial data  (and not only "equivor t ica l" ) .  

4. A var ia t ional  pr inc ip le  for  flows of a ro ta t ing  fluid inhomogeneous in densi ty  is given also in [15]. 
The functional of the type (1.10) is built f r o m  the ene rgy  and the in tegral  of an a r b i t r a r y  function of the a rgu-  
ment  tr �9 Vp,  where  p is density,  w is  vor t ic i ty .  As a r e su l t  of the d iscuss ion  in [15] one obtains a nu mb er  of 
in te res t ing  cases .  They cover ,  e.g.,  the homogeneous  fluid and the p lana r  motion of a s t ra t i f i ed  fluid, c o r r e -  
sponding to ~ .  Vp -= 0. 

5. In d i rec t  calculat ion of the t ime  de r iva t ive  of ene rgy  by applying the l inear ized  equations of motion 
(7.1) t he re  a r i s e  e v e r y w h e r e  the Reynolds  s t r e s s e s  

d y uiui (' c3Ui 
~ - T  d~ = J ~ u ~ d ~ .  

The exis tence  of the in tegra l  (7.3) means  that  these  s t r e s s e s  a r e  e x p r e s s e d  in the f o r m  of a t ime  der iva t ive  of 
the co r respond ing  functional so that  the equation of total  ene rgy  is at once in tegra ted .  

6. After  the t rans i t ion  in (9.4)-(9.6) to a spec t r a l  p rob lem for  the no rma l  waves (the f ields of P e r t u r b a -  
t ions propor t iona l  to exp[i(kx - wt)]) one d i rec t ly  obtains the well-known spec t r a l  e s t i m a t e s  of Singh [13, 16]. 

7. The addition of the s c a l a r  field a i n c r e a s e s  the number  of "deg rees  of f r eedom"  of the functional F 
and,  consequently,  d iminishes  the likelihood of ex is tence  o f  pos i t ive-def in i te  f o r m s .  As is shown in Section 7, 
the ro le  of a cons i s t s  in an impl ic i t  introduct ion of the Lagrangian  va r i ab les .  The p r e s e n c e  of s y m m e t r y  of 
mot ion p e r m i t s  one to r e m o v e  these  va r i ab l e s  and to obtain conserva t ion  laws in t e r m s  of the veloci ty  and den-  
s i ty  f ields only. In absence  of s y m m e t r y  such a r e m o v a l  cannot  be p e r f o r m e d .  Pe rhaps  this  is  the i m p e r f e c -  
t ion of the applied method and in genera l  case  Eqs.  (7.1) have in tegra l s  that  do not contain Lagmngian  c h a r a c -  
t e r i s t i c s  of the flow. Undoubtedly, finding such in tegra l s  would be of in te res t .  
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